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Preview
In this chapter, we are going to consider different models for claim frequency. We start with
some basic discrete frequency distributions. Then, we shall look at some general classes of
distributions whose pmfs satisfy some recursive relations – the (a, b, 0) and (a, b, 1) classes.
We will further study more sophisticated compound models, and how deductibles would
affect the payment frequency.

Key topics in this chapter:
1. Common parametric distributions for modelling frequency – Binomial, Negative

Binomial, Poisson;

2. Mixed Poisson distribution;

3. The (a, b, 0) class;

4. The (a, b, 1) class – zero truncated and zero modified distributions;

5. Compound frequency model;

6. Effect of deductibles on payment frequency.

1 Basic Frequency Distributions
In what follows, we will let N be a frequency variable, i.e., a discrete random variable
that describes the number of claims received by an insurer, whose support is given by N0 :=
{0, 1, 2, . . . }. In this section, we shall look at some common discrete, parametric distributions
for modelling frequency.

1.1 Binomial Distribution

N follows a binomial distribution with parameters m ∈ N and q ∈ [0, 1], denoted by N ∼
Bin(m, q), if it has the following pmf:

pN(k) =

(
m

q

)
qk(1− q)m−k, k = 0, 1, . . . ,m.
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• The binomial distribution models the number of successes (e.g. number of claims) over m
independent trials when the success rate (e.g. claim rate) of each trial is q.

• Some distributional quantities of N ∼ Bin(m, q):

1. Mean and Variance:

E[N ] = mq, Var[N ] = mq(1− q).

2. Probability Generating Function:

PN(t) = (1 + q(t− 1))m, t > 0.

• The pgf can be derived as follows:

PN(t) = E[tN ] =
m∑
k=0

(
m

k

)
tkqk(1− q)m−k =

m∑
k=0

(
m

k

)
(tq)k(1− q)m−k

= (tq + (1− q))m = (1 + q(t− 1))m.

• When mq(1− q) is large (i.e. when m is large and q is away from 0 and 1), we can use a
normal distribution to approximate a binomial distribution.

• N ∼ Bin(m, q) is the m-convolution (i.e. m independent sum) of Bernoulli distribution
with parameter q:

Theorem 1.1 Let N1, . . . , Nm be independent Bernoulli random variables with param-
eter q (i.e. Ni ∼ Bern(q) = Bin(1, q)). Then, N :=

∑m
i=1Ni ∼ Bin(m, q).

Proof. We know that for each i = 1, . . . ,m, PNi
(t) = 1 + q(t − 1). By independence, the

pgf of N is given by

PN(t) = E
[
tN1+···+Nm

]
=

m∏
i=1

E[tNi ] =
m∏
i=1

PNi
(t) = (1 + q(t− 1))m,

which is the pgf of Bin(m, q).

1.2 Negative Binomial Distribution

N follows a negative binomial distribution with parameters r > 0 and β > 0, denoted by
N ∼ NB(r, β), if it has the following pmf:

pN(k) =

(
r + k − 1

k

)(
1

1 + β

)r (
β

1 + β

)k

, k ∈ N0.
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Here, the binomial coefficient for x ∈ R and k ∈ N is defined as(
x

k

)
=

x(x− 1) · · · (x− k + 1)

k!
,

(
x

0

)
= 1.

When x > k − 1, we can also write the binomial coefficient in terms of the gamma func-
tion: (

x

k

)
=

Γ(x+ 1)

Γ(x− k + 1)Γ(k + 1)
.

• When r is a positive integer, the negative binomial distribution models the number of
failures in a sequence of Bernoulli trials until the r-th success occurs, where the failure
odd is β > 0.

• Some distributional quantities of N ∼ NB(r, β):

1. Mean and Variance:

E[N ] = rβ, Var[N ] = rβ(1 + β).

2. Probability Generating Function:

PN(t) = (1− β(t− 1))−r, |t| < 1 +
1

β
.

• To show that pN is a valid pmf, and to derive the pgf, we can use the following relation:
for α ∈ R and |x| < 1,

(1 + x)α =
∞∑
k=0

(
α

k

)
xk and

(
−α

k

)
= (−1)k

(
α + k − 1

k

)
.

For instance, using this, the pgf can be shown as follows:

PN(t) = E[tN ] =
∞∑
k=0

tk
(
r + k − 1

k

)(
1

1 + β

)r (
β

1 + β

)k

=

(
1

1 + β

)r ∞∑
k=0

(
r + k − 1

k

)(
tβ

1 + β

)k

=

(
1

1 + β

)r ∞∑
k=0

(
−r

k

)(
− tβ

1 + β

)k

=

(
1

1 + β

)r (
1− tβ

1 + β

)−r

(for |t| < 1 + 1/β)

= (1− β(t− 1))−r.
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• The geometric distribution is a special case of the negative binomial distribution when
r = 1, which is denoted by N ∼ Geom(β) = NB(1, β).

1.3 Poisson Distribution

N follows a Poisson distribution with parameter λ > 0, denoted by N ∼ Poi(λ), if it has the
following pmf:

pN(k) =
e−λλk

k!
, k ∈ N0.

• Poisson distributions are used to model occurrences of events (e.g. insurance claims) with
a constant rate of occurrences in a certain time period.

• It is the asymptotic limit of the binomial distribution when m → ∞ and mq → λ.

• Some distributional quantities of N ∼ Poi(λ):

1. Mean and Variance:
E[N ] = λ, Var[N ] = λ.

2. Probability Generating Function:

PN(t) = eλ(t−1), t ∈ R.

• The pgf can be derived as follows:

PN(t) = E[tN ] =
∞∑
k=0

tk
e−λλk

k!
= e−λ

∞∑
k=0

(tλ)k

k!
= e−λeλt = eλ(t−1).

• N ∼ Poi(λ) is the m-convolution of Poisson distributions with parameters λi which
sums to λ:

Theorem 1.2 Let Ni, i = 1, . . . ,m, follows Ni ∼ Poi(λi). Then, N :=
∑n

i=1 Ni ∼
Poi(

∑n
i=1 λi).

Proof. For each i = 1, 2, . . . ,m, we know that the pgf of Ni Poi(λi) is given by PNi
(t) =

eλi(t−1). By independence,

PN(t) = E
[
tN1+···+Nm

]
=

m∏
i=1

E[tNi ] =
m∏
i=1

eλi(t−1) = e(t−1)
∑n

i=1 λi ,

which is the pgf of Poi(
∑n

i=1 λi).

4



• Conversely, if the number of claims N follows a Poisson distribution, and each claim can
be classified into one of m different classes. Then, the number of claims for each class also
follows a Poisson distribution. This observation is called thinning. The precise statement
and its proof are deferred to Theorem 6.2 below.

2 Mixed Poisson Distribution
In Chapter 2, we introduced mixture distributions. For instance, when the parameter of
a distribution is random, the unconditional distribution can be viewed as a mixture of the
conditional ones. In frequency model, if N is a random variable such that

N |Λ = λ ∼ Poi(g(λ)),

where Λ is also a random variable, we say that N has a mixed Poisson distribution.

In a Poisson distribution, the mean and variance are equal, which can be limiting for modeling
frequency data, as this assumption often does not hold in practice, where the variance is
typically greater than the mean. In contrast, if N has a mixed Poisson distribution, we
always have Var[N ] > E[N ].

Proposition 2.1 Let N be a mixed Poisson variable, i.e., N |Λ = λ ∼ Poi(g(λ)). Then,

E[N ] = E[g(Λ)] and Var[N ] = E[g(Λ)] + Var[g(Λ)].

In particular Var[N ] > E[N ].

Proof. Since N |Λ = λ ∼ Poi(g(λ)), we have E[N |Λ = λ] = g(λ) = Var[N |Λ = λ]. By the
law of iterated expectation,

E[N ] = E[E[N |Λ]] = E[g(Λ)].

Next, by the law of total variance,

Var[N ] = E[Var[N |Λ]] + Var[E[N |λ]] = E[g(Λ)] + Var[g(Λ)].

2.1 Poisson-Gamma Mixture

One important case of a mixed Poisson distribution is when the mixing distribution Λ follows
a gamma distribution, Λ ∼ Gamma(α, θ). In this case, the mixed Poisson variable indeed
follows a negative binomial distribution.

Theorem 2.2 Suppose that N is a mixed Poisson variable with N |Λ ∼ Poi(Λ). If
Λ ∼ Gamma(α, θ), then N ∼ NB(α, θ).
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Proof. The pdf of Λ ∼ Gamma(α, θ) is given by

fΛ(λ) =
1

θαΓ(α)
λα−1e−

λ
θ , λ > 0.

On the other hand, for k ∈ N0,

P(N = k|Λ = λ) =
e−λλk

k!
.

Using the law of total probability, we have, for any k ∈ N0,

P(N = k) =

∫ ∞

0

P(N = k|Λ = λ)fΛ(λ)dλ

=

∫ ∞

0

(
e−λλk

k!

)(
1

θαΓ(α)
λα−1e−

λ
θ

)
dλ

=
1

θαΓ(α)k!

∫ ∞

0

λα+k−1e−(
1+θ
θ )λdλ

=
1

θαΓ(α)

(
θ

1 + θ

)α+k ∫ ∞

0

tα+k−1e−tdt

=
Γ(α + k)

k!Γ(α)

(
1

1 + θ

)α (
θ

1 + θ

)k

=

(
α + k − 1

k

)(
θ

1 + θ

)k (
1

1 + θ

)α

,

where the fourth line follows from a change of variable t = (1 + θ)λ/θ. From the above, we
see that the pmf of N agrees with the pmf of NB(α, θ).

Example 2.1 The annual number of insurance claims has a Poisson distribution with
mean Λ. The Poisson mean Λ follows a gamma distribution with mean 20 and variance
200. Find the probability that there are at least two claims in a year.
Solution:
It is known that Λ ∼ Gamma(α, θ), and

E[Λ] = αθ = 20 and Var[Λ] = αθ2 = 200.

Solving yields α = 2 and θ = 10. Hence, the number of claims N ∼ NB(2, 10), and

P(N ≥ 2) = 1− P(N = 0)− P(N = 1)

= 1−
(

1

1 + 10

)2

−
(
2

1

)(
10

1 + 10

)(
1

1 + 10

)2

= 0.97671.
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3 The (a, b, 0) Class
As we will see, the pmfs of binomial, negative binomial, and the Poisson distributions intro-
duced in the last section satisfy a special recursive relation. These distributions are said to
belong to the (a, b, 0) class, defined as follows:

Definition 3.1 Let pk = pN(k), k ∈ N0 be the pmf of the random variable N . The
distribution of N is a member of the (a, b,0) class if there exist constants a and b such
that

pk
pk−1

= a+
b

k
, k = 1, 2, . . . (1)

The values a, b in the name (a, b, 0) specify the constants in the recursive relation, and 0
indicates that the recursion starts at p0. It is not difficult to verify that the binomial,
negative binomial, and the Poisson distributions belong to the (a, b, 0) class. The following
table summarizes the constants a and b for these distributions:

1. Binomial:
a = − q

1− q
, b =

(m+ 1)q

1− q
,

2. Negative Binomial:

a =
β

1 + β
, b =

(r − 1)β

1 + β
,

3. Poisson:
a = 0, b = λ.

Theorem 3.1 The Poisson, negative binomial, and binomial distributions are the only
members of the (a, b, 0) class.

Theorem 3.1 can be proven by identifying the general form of the pgf of an (a, b, 0) distri-
bution, the details are out of the scope of our course.

Theorem 3.1, along with the table above it, allow us to identify a distribution from the
(a, b, 0) class:

Consider a distribution belonging to the (a, b, 0) class:
• If a > 0, the distribution is negative binomial;
• If a = 0, the distribution is Poisson;
• If a < 0, the distribution is binomial.
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Example 3.1 Suppose that the distribution of N belongs to the (a, b, 0) class, with
p0 = p1 = 0.25, and p2 = 0.1875. Find p3 and determine the distribution of N .
Solution:
Using the definition of (a, b, 0) class, we know that

0.25

0.25
=

p1
p0

= a+
b

1
= a+ b,

0.1875

0.25
=

p2
p1

= a+
b

2

⇒

a+ b = 1,

a+
b

2
= 0.75.

Solving yields a = b = 0.5. Hence,

p3 = p2

(
0.5 +

0.5

3

)
= 0.125.

Since a = 0.5 > 0, N follows a negative binomial distribution, where

0.5 = a =
β

1 + β
⇒ β = 1,

and
0.5 = b =

(r − 1)

1 + 1
=

r − 1

2
⇒ r = 2,

In other words, N ∼ NB(2, 1).

Example 3.2 The pmf of a discrete distribution satisfies the following recursion:

pk =

(
−c+

4c

k

)
pk−1, k = 1, 2, . . . ,

where c ̸= 0. If p0 = 0.216, find the value of c.
Solution:
Since c ̸= 0, the distribution is either negative binomial or binomial. With a = −c and
b = 4c, b/a = −4. If the distribution is negative binomial, b/a = r − 1 = −4 if r = −3,
which contradicts with the requirement that r > 0. Hence, the pmf is given by a binomial
distribution. For a binomial distribution,

b

a
= −(m+ 1) = −4,

which indicates that m = 3. By considering 0.216 = p0 = (1− q)3, we have q = 0.4.
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Therefore,

a = −c = − q

1− q
= − 0.4

1− 0.4
= −2

3
⇒ c =

2

3
.

4 The (a, b, 1) Class
The (a, b, 0) class provides a convenient characterization of some distributions for frequency
models. Only, it also suffers from a few shortcomings:

• (a, b, 0) class is too narrow and restrictive: it only consists of 3 distributions;

• For insurance claims, the probability of receiving 0 claim (p0 = P(N = 0)) is often
very large. This could not be captured by the distributions in the (a, b, 0) class.

To address this, we introduce the (a, b, 1) class, which offers a higher flexibility for modelling
while preserving the recursive relation of the pmf.

Definition 4.1 The distribution of N is a member of the (a, b,1) class if there exist
constants a and b such that

pk
pk−1

= a+
b

k
, k = 2, 3, . . . (2)

Compared with the (a, b, 0) class, the recursive relation in Equation (2) starts at p1, whence
the name (a, b, 1). The value p0 can be set arbitrarily. Then, the values pk, k ≥ 2, are
determined in a way that the (a, b, 1) equation (2), and the following are satisfied:

p0 = 1−
∞∑
k=1

pk.

We consider two types of (a, b, 1) class:

1. Zero-Truncated (a, b, 1) class: The probability at 0 is set as p0 := 0. The associated
pmf is denoted by pTk , k = 1, 2, . . . ;

2. Zero-Modified (a, b, 1) class: The probability at 0 is set as pM0 > 0. The associated
pmf is denoted by pMk , k = 1, 2, . . . . Indeed, the zero-truncated class can also be
considered as a special example of the zero-modified class.

4.1 Zero-Modified (a, b, 1) Class

An (a, b, 1) distribution can be constructed from an (a, b, 0) distribution by the follow-
ing:
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Proposition 4.1 Let {pk}∞k=0 be a pmf which satisfies the (a, b, 0) equation (1). Define
{pMk }∞k=0 by

pMk := cpk, k = 1, 2, . . . ,

c :=
1− pM0
1− p0

,
(3)

where pM0 ∈ [0, 1) is arbitrarily chosen. Then, {pMk }∞k=0 is a pmf satisfying the (a, b, 1)
equation (2).

Proof. If {pMk }∞k=0 satisfies Equation (3), then for any k ≥ 2,

pMk
pMk−1

=
cpk
cpk−1

=
pk
pk−1

= a+
b

k
.

In addition,

pM0 +
∞∑
k=1

pMk = pM0 +
1− pM0
1− p0

∞∑
k=1

pk = pM0 +
1− pM0
1− p0

(1− p0) = 1.

Therefore, {pMk }∞k=0 is a pmf satisfying the (a, b, 1) equation.

As a consequence of Proposition 4.1, an (a, b, 1) distribution can be constructed by following
the steps below:

1. Identify a, b, and the associated (a, b, 0) distribution;

2. Set pM0 and compute c;

3. Set pMk := cpk.

Recall that the (a, b, 0) class only consists of three elements – binomial, negative bino-
mial, and Poisson. The (a, b, 1) distribution constructed from these distributions are thus
called zero-modified binomial (ZM-Bin(m, q, pM0 )), zero-modified negative binomial
(ZM-NB(r, β, pM0 )), and zero-modified Poisson (ZM-Poi(λ, pM0 )) distribution, respectively.

The pgfs of (a, b, 0) and (a, b, 1) distributions are related as follows:

Proposition 4.2 Let PM(t) be the pgf of an (a, b, 1) distribution, and P (t) be the pgf
of the associated (a, b, 0) distribution. Then,

PM(t) = 1− c+ cP (t).
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Proof. By Equation (3), we have

PM(t) = pM0 +
∞∑
k=1

pMk tk

= pM0 + c
∞∑
k=1

pkt
k

= pM0 + c (P (t)− p0)

= pM0 − cp0 + cP (t)

= pM0 − p0(1− pM0 )

1− p0
+ cP (t)

=
pM0 − p0
1− p0

+ cP (t)

= 1− c+ cP (t).

As a consequence of Proposition 4.1, if we let µ and σ2 be the mean and variance of an
(a, b, 0) distribution, the mean µM and variance σ2

M of the (a, b, 1) distribution constructed
from it are respectively given by

µM = cµ and σ2
M = c(1− c)µ2 + cσ2.

4.2 Zero-Truncated (a, b, 1) Class

The zero-truncated (a, b, 1) class can be considered as a special case of the zero-modified
class, with pT0 = 0. Hence, by Equation (3), if {pk}∞k=1 is the pmf of an (a, b, 0) distribution,
then {pTk }∞k=0 is the pmf of an (a, b, 1) distribution if and only if the following holds:

pTk = cpk, k = 1, 2, . . . ,

c =
1

1− p0
.

The pgf of a zero-truncated (a, b, 1) distribution, P T (t), is given by

P T (t) = 1− c+ cP (t) =

(
1− 1

1− p0

)
+

P (t)

1− p0
,

where P (t) is the pgf of the associated (a, b, 0) distribution.
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Example 4.1 The pmf of a discrete distribution satisfies the following recursion:

pMk =
4pMk−1

k
, k = 2, 3, . . . .

If pM0 = 0.2, find pM5 .
Solution:
The pmf satisfies the (a, b, 1) equation with a = 0 and b = 4. This indicates that the
distribution is given by a zero-modified Poisson distribution with λ = 4. If we let {pk}∞k=0

be the pmf of Poi(4), we have p0 = e−4. Hence,

c =
1− pM0
1− p0

=
0.8

1− e−4
.

The required probability is thus

pM5 = cp5 =
0.8

1− e−4

(
e−445

5!

)
= 0.1274.

Example 4.2 Suppose that the pgf of the random variable N is given by

PN(t) =
3

4
+

1

4(3− 2t)3
, t <

3

2
.

Determine the distribution of N as a member of the (a, b, 1) class.
Solution:
We can write

PN(t) =

(
1− 1

4

)
+

1

4

1

(3− 2t)3
= 1− c+ cP (t),

where c = 1/4, and P (t) = (3−2t)−3 is the pgf of NB(r = 3, β = 2). With p0 = PN(0) =
1/27, we can solve pM0 by setting

1

4
= c =

1− pM0
1− p0

=
1− pM0
1− 1

27

⇒ pM0 =
41

54
.

Therefore, N ∼ ZM-NB(r = 3, β = 2, pM0 = 41/54).
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4.3 Extended Truncated Negative Binomial Distribution

Recall that the negative binomial distribution, NB(r, β), is parametrized by r > 0 and β > 0.
If r ∈ (−1, 0),

p0 =

(
1

1 + β

)r

> 1, p1 = r

(
1

1 + β

)r (
β

1 + β

)
< 0,

and for k ≥ 2,

pk =
β

1 + β

(
1 +

r − 1

k

)
pk−1 < 0,

which violates the requirement of being a pmf. However, it still holds that

∞∑
k=0

pk = 1.

The flexibility of setting pT0 = 0 allows us to extend the choice of parameter r > 0, to
r > −1, r ̸= 0, that gives an (a, b, 1) distribution satisfying the same recursion relation (2) as
a negative binomial distribution. The resulting distribution is referred to as the extended
truncated negative binomial (ETNB) distribution .

Definition 4.2 A random variable is said to follow an extended truncated negative
binomial (ETNB) distribution , denoted by ETNB(r, β), where r > −1, r ̸= 0, and
β > 0, if its pmf {pTk }∞k=0 is given by

pT0 = 0, pTk = cpk, k = 1, 2, . . . , (4)

where

c :=
1

1−
(

1
1+β

)r ,

pk :=

(
r + k − 1

k

)(
1

1 + β

)r (
β

1 + β

)k

, k = 1, 2, . . .

(5)

To see that Equations (4) - (5) indeed define a valid pmf, consider

∞∑
k=0

pTk = c

∞∑
k=1

pk = c

(
1−

(
1

1 + β

)r)
= 1.

If r > 0, we have c > 0 and pk > 0, and thus pTk > 0 for any k ∈ N. If −1 < r < 0, we
have c < 0 and pk < 0, whence we still have pTk > 0. Therefore, {pTk }∞k=1 is indeed a valid
pmf.
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5 Compound Frequency Models
A compound model is given by the sum of N random variables, where N itself is also random.
In frequency models, we can interpret N as the number of accidents within a period of time,
and Mk, k = 1, 2, . . . , N , be the random variable of the number of claims received associated
to the k-th accident. Hence, we can model the total number of claims S by:

S := M1 +M2 + · · ·+MN =
N∑
k=1

Mk.

The random variable S is said to follow a compound distribution . In this chapter, we
assume M1,M2, . . . are i.i.d. random variables with a common distribution represented by M ,
and are independent of N . For the compound variable S, we call the distribution of N as the
primary distribution, and the distribution of M as the secondary distribution.

It is not an easy task to express the pmf of S in a neat manner. Alternatively, we can
characterize its distribution of the pgf of M and N :

Theorem 5.1 The pgf of S is given by

PS(t) = PN(PM(t)).

Proof. By the definition of PS(t), the independence of M and N , and the law of iterated
expectation, we have

PS(t) = E[tS] = E
[
E[tS|N ]

]
= E

[
E
[
tM1+···+MN |N

]]
= E

[
N∏
k=1

E[tMk |N ]

]
= E

[
(E[tM ])N

]
= E

[
(PM(t))N

]
= PN(PM(t)).

Notice that the third-to-last line follows since M1, . . . ,Mn are i.i.d. with a common distribu-
tion M , and are independent of N .

Using the pgf of S, or alternatively, by the law of iterated expectation/law of total variance,
the mean and variance of S is given as follows:

Proposition 5.2 For the compound variable S, we have

E[S] = E[N ]E[M ] and Var[S] = E[N ]Var[M ] + E2[M ]Var[N ].
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Proof. To compute E[S], we apply the law of iterated expectation:

E[S] = E[E[S|N ]] = E [E[M1 + · · ·+MN |N ]] = E[NE[M ]] = E[M ]E[N ],

where the second last equality follows from the facts that M ⊥⊥ N , and M1,M2 are i.i.d. To
find Var[S], we apply the law of total variance, and make use of the independence of M and
N to obtain

Var[S] = E[Var[S|N ]] + Var[E[S|N ]]

= E[Var[M1 + · · ·+MN |N ]] + Var[E[M1 + · · ·+MN |N ]]

= E[NVar[M ]] + Var[NE[M ]]

= E[N ]Var[M ] + E2[M ]Var[N ].

Example 5.1 Let S be a compound random variable with the following pgf:

PS(t) = exp

(
5

(1− 3(t− 1))4
− 5

)
, |t| < 4

3
.

(a) Identify the primary and secondary distribution of S.
(b) Find E[S] and Var[S].

Solution:

(a) We can write PS(t) as

PS(t) = e5(PM (t)−1) = PN(PM(t)),

where
PN(t) = e5(t−1) and PM(t) =

1

(1− 3(t− 1))4
.

Hence, we can identify the primary distribution is given by N ∼ Poi(5), and the
secondary distribution is given by M ∼ NB(4, 3).

(b) To compute E[S], we have

E[S] = E[M ]E[N ] = (4× 3)(5) = 60.

To compute Var[S], notice that

Var[N ] = 5 and Var[M ] = 4× 3× (1 + 3) = 48.

Hence,

Var[S] = E[N ]Var[M ] + E2[M ]Var[N ] = (5)(48) + (12)2(5) = 960.
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6 Payment Frequency under Deductibles
In the previous sections, we have discussed models for claim frequency N . When deductibles
are imposed, not all claims will result in a payment. In this section, we use NL to denote
the number of claims/loss, and NP to denote the number of payments.

Assume that each claim has a probability v of leading to a payment, e.g., v = P(X > d),
where X is the loss size and d is the deductible. Then, we can write NP as a compound
distribution with NL being the primary distribution:

NP = I1 + I2 + · · ·+ IN =
N∑
k=1

Ik,

where for each k = 1, 2, . . . , N , Ik is an indicator variable defined by

Ik :=

{
1, if the k-th claim results in a payment;
0, otherwise.

Then, it is clear that Ik ∼ Bernoulli(v). Suppose that Ik, k = 1, 2, . . . , are independent, and
are independent of N . Then we can express the pgf of NP in terms of NL and v:

Proposition 6.1 Suppose that Ik, k = 1, 2, . . . are independent, and are independent
of N . Then, the pgf of NP is given by

PNP (t) = PNL(1− v + vt).

Proof. Let I ∼ Bernoulli(v) = Bin(1, v) be the representative variable of Ik, k = 1, 2, . . . .
By the pgf of a Bernoulli (or binomial) distribution, we know that

PI(t) = 1− v + vt.

By Theorem 5.1, we have

PNP (t) = PNL(PI(t)) = PNL(1− v + vt).
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6.1 Special Case: (a, b, 0) and (a, b, 1) Classes

In general, it is not easy to find the distribution of NP from NL. However, if the distribution
of NL belongs to the (a, b, 0) class, NP will also belong to the same distribution family with
different parameters. The following table summarizes the distribution of NP given that
of NL, which can be easily proven by Proposition 6.1 and using the pgfs of the (a, b, 0)
distributions.

Distribution NL NP

Binomial Bin(m, q) Bin(m, qv)
Negative Binomial NB(r, β) NB(r, βv)

Poisson Poi(λ) Poi(vλ)

Table 1: Distribution of NP if NL belongs to the (a, b, 0) class

Likewise, if NL belongs to the (a, b, 1) class, NP will have the same type of distribution but
with different parameters, and a different probability at zero. To see this, recall that the pgf
of NL is given by

PNL(t) = 1− c+ cPN(t) =

(
1− 1− pM0

1− p0

)
+

1− pM0
1− p0

PN(t),

where N belongs to the (a, b, 0) distribution with p0 = P(N = 0), and pM0 = P(NL = 0) is
the modified zero probability of NL. By Proposition 6.1, the pgf of NP is given by

PNP (t) = PNL(1− v + vt) = 1− c+ cPN(1− v + vt) = 1− c+ cPN∗(t),

where N∗ is the revised (a, b, 0) distribution of N due to deductible, see Table 1. Thus, NP

belongs to the (a, b, 1) class with the associated (a, b, 0) variable N∗. The zero probability
of NP , pM∗

0 := P(NP = 0), will also change due to the deductible revision, which can be
computed by as follows:

pM∗
0 = PNP (0) = 1− c+ cPN∗(0) = 1− c+ cp∗0 = 1− 1− pM0

1− p0
+

1− pM0
1− p0

p∗0,

where p∗0 := P(N∗ = 0). Equivalently,

1− pM
∗

0 =
1− pM0
1− p0

(1− p∗0). (6)

Table 2 below summarizes the relationship of NL and NP if NL belongs to the (a, b, 1) class
from the above discussions.
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Distribution NL NP

ZM-Binomial ZM-Bin(m, q, pM0 ) ZM-Bin(m, qv, pM∗
0 )

ZM-Negative Binomial ZM-NB(r, β, pM0 ) ZM-NB(r, βv, pM∗
0 )

ZM-Poisson ZM-Poi(λ, pM0 ) ZM-Poi(vλ, pM∗
0 )

(a, b, 1) variable Associated (a, b, 0) variable
No. of Loss NL, pM0 N , p0

No. of Payment NP , pM∗
0 N∗, p∗0

Table 2: Distribution of NP if NL belongs to the (a, b, 1) class

Example 6.1 (SOA EXAM STAM SAMPLE Q126 MODIFIED) The number
of annual losses has a Poisson distribution with a mean of 5. The size of each loss has a
two-parameter Pareto distribution with θ = 10 and α = 2.5. An insurance for the losses
has an ordinary deductible of 5 per loss. Calculate the expected number of payment.
Solution:
Since X ∼ Pareto(2.5, 10), the probability of payment is given by

v = P(X > d) = P(X > 5) =

(
10

5 + 10

)2.5

= 0.36289.

Hence, the distribution of the number of payment NP is given by NP = Poi(λv) =
Poi(5× 0.36289) = Poi(1.8144). Thus, the expected number of payment is 1.8144.

Example 6.2 The number of annual losses NL has a zero-modified binomial distribution
with m = 10, q = 0.3, and P(NL = 0) = 0.6. The size of each loss has an exponential
distribution with mean 100. Suppose that a deductible of amount 70 is applied.

(a) Calculate the probability that there is no payment to be made.
(b) Calculate the expected number of payment.

Solution:
(a) First, we compute the probability of payment for each loss. For X ∼ Exp(100), we

have
v = P(X > 70) = e−

70
100 = e−0.7.

Hence, NP follows a zero-modified binomial distribution with m = 10, and q =
0.3e−0.7. Next, we calculate the modified zero probability pM∗

0 of NP . To this end,
let N∗ ∼ Bin(10, 0.3e−0.7), which is the associated (a, b, 0) variable for NP .
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Consider

p0 = P(Bin(10, 0.3) = 0) = 0.710,

p∗0 = P(N∗ = 0) = (1− 0.3e−0.7)10.

Hence,

1− pM∗
0 =

1− pM0
1− p0

(1− p∗0) =
1− 0.6

1− 0.710
(
1− (1− 0.3e−0.7)10

)
= 0.32961,

which gives pM∗
0 = 1− 0.32961 = 0.67039.

(b) First, we have
E[N∗] = 10(0.3e−0.7) = 3e−0.7.

Since N∗ is the associated (a, b, 0) variable for NP , we can calculate the propor-
tionality constant c of N∗ and NP by

c =
1− pM∗

0

1− p∗0
=

1− pM0
1− p0

=
1− 0.6

1− 0.710
= 0.41163.

Therefore,
E[NP ] = cE[N∗] = (0.41163)(3e−0.7) = 0.61323.

6.2 General Thinning Theorems for (a, b, 0) Class

Revising the loss frequency NL to payment frequency NP is an example of thinning : each
loss can be classified into either of the following:

1. loss that needs a payment, with probability v = P(X > d);

2. loss that no payment is needed, with probability 1− v.

This classification can be generalized to more than two types as follows.

Suppose that the number of claims is N , and each claim can be classified into one of m
types with probability p1, . . . , pm, where

∑m
i=1 pi = 1. Let Ni, i = 1, . . . ,m be the number

of claims that belong to type i. Then, by following the proof of Proposition 6.1, the pgf of
Ni is given by

PNi
(t) = PN(1− pi + pit).

As before, if N belongs to the (a, b, 0) class, each Ni will have the same class of distribution,
but with a different parameter as shown in Table 3 below.

In particular, if N ∼ Poi(λ), the thinned variables N1, . . . , Nm will be independent ; see
Theorem 6.2 below. This is NOT true for binomial and negative binomial. Indeed, the
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Distribution N Ni

Binomial Bin(m, q) Bin(m, piv)
Negative Binomial NB(r, β) NB(r, βpi)

Poisson Poi(λ) Poi(piλ)

Table 3: Distribution of Ni, i = 1, . . . ,m, if N belongs to the (a, b, 0) class

independence is a consequence of the superposition property of that is unique to the Poisson
distribution (i.e., sum of independence Poisson is again a Poisson).

Theorem 6.2 (Thinning) Suppose that the number of claims N ∼ Poi(λ). Then, the
thinned variables N1, . . . , Nm are independent Poisson random variables with parameters
λ1, . . . , λm, respectively.

Sketch of Proof. Using the fact that PNi
(t) = PN(1− pi + pit), it can be shown easily that

PNi
(t) = eλpi(t−1),

which implies Ni ∼ Poi(λpi). To show that N1, . . . , Nm are independent, it suffices to show
that

PN1+···+Nm(t) =
m∏
i=1

PNi
(t).

The factorization of the characteristic function implies that the distribution of N1+ · · ·+Nm

is consistent with the distribution of their independent sum.

Indeed,

PN1+···+Nm(t) = PN(t) = eλ(t−1),

and
m∏
i=1

PNi
(t) =

m∏
i=1

eλpi(t−1) = eλ(t−1)
∑m

i=1 pi = eλ(t−1).

Therefore, we conclude that N1, . . . , Nm are independent1.

1Strictly speaking, one needs to show that Pa1N1+···+amNm
(t) is the pgf of Poi(a1λ1 + · · ·+ amλm) for all

(a1, . . . , an) ∈ Rn
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